Синтез хлорофилла

 Синтез хлорофилла. Многоступенчатый процесс, который делят на две фазы: темновую и световую. В темноте происходит синтез протохлорофиллида, который отличается от хлорофилла отсутствием остатка фитола и двух атомов водорода. Затем на свету протохлорофиллид присоединяет 2 атома водорода к 7-мому и 8-мому углеродным атомам и образует хлорофиллид. К последнему присоединяется фитол, и он превращается в хлорофилл (фермент хлорофиллаза). Эта реакция тоже идет в темноте.

Биосинтез хлорофилла, все ферменты которого локализованы в хлоропластах, подразделяется на следующие этапы:

δ-Аминолевулиновая кислота → Порфобилиноген → Уропорфириноген I и III копропорфиноген III → протопорфиноген IХ → протопорфирин IХ → Mg-протопорфирин IХ метиловый эфир Mg-протопорфирина → протохлорофиллид → протохлорофиллид голохром → хлорофиллид а голохром → хлорофиллид а → хлорофилл.

1 стадия – исходным веществом в биосинтезе порфиринов является сукцинил Со-А (из лимоннокислого цикла) и глицин, из них образуется   δ-аминолевулиновая кислота. Этот путь характерен для микроорганизмов и животных. Реакция идет с участием фермента – АЛК-синтаза:

Существует мнение, что АЛК в хлоропластах образуется другим путем, вероятнее всего из интактной молекулы глутамата. Фермент, катализирующий реакцию, удалось выделить из пластид в чистом виде недавно; реакция представляет собой новый внутримолекулярный перенос аминогруппы:

В последнее время уточнили, что δ-аминолевулиновая кислота образуется из С5-дикарбоновых кислот: глутаминовая кислота через 2-гидрооксиглутаровую преобразуется в 4,5-диоксивалериановую, которая затем амминируется за счет аланина и других кислот.

Показательно, что это выраженное разветвление путей биосинтеза гема у животных и высших растений происходит, вероятно, на ключевой стадии биосинтетического пути – образовании АЛК.

Интересно было бы выявить каким из путей синтезируются молекулы АЛК, дающие начало тем небольшим количествам производных гема, которые выявлены у растений, выращенных в темноте: имеет ли место рассмотренный путь синтеза из глутамата или здесь действует путь, который происходит у животных (но его трудно выявить, поскольку в реакциях участвуют очень малые количества субстрата)?

2 стадия – образование первичного пиррола: 2 молекулы δ-АЛК → порфобилиноген превращаются в присутствии фермента АЛК-дегидратазы. Порфобилиноген – это первый предшественник металлопорфиринов, имеющий пиррольную природу.

3 стадия – образование циклического тетрапиррола. Четыре молекулы порфобилиногена превращаются в уропорфиноген I, а затем III:

4 стадия происходит отщепление 4 СО2от остатков СН2СООН → СНв положениях 1, 3, 5, 8 молекулы уропорфириногена с участием фермента  уропорфириногендекарбоксилазы и образуется копропорфириноген:

5 стадия – копропорфиноген превращается в протопорфириноген IХ за счет окислительного декарбоксилирования в 2 и 4 положениях:

–СН2–СН2–СООН + ½ О2→ СН2= СН2+ СО2+ Н2О

6 стадия –в результате реакции дегидрирования, при которой отщепляются 6Н+из протопорфириногена IХ образуется протопорфирин:

7 стадия – происходит включение Mg (NН → N) и образуется Mg-протопорфирин IХ.

Вероятно, на стадии образования протопорфирина IХ происходит также разветвление путей биосинтеза – один ведет к образованию железопорфиринов (гем), другой – к магнийпорфиринов (хлорофиллам). В растениях обнаружены оба пути, у животных – только первый.

В биосинтезе железосодержащих порфиринов участвует фермент феррохелатаза, который выделен как из пластид, так и митохондрий растений. Этот фермент эффективно преобразует протопорфирин в протогем (гемb), который входит в состав цитохромов, каталазы, пероксидазы и гемоглобина. Нужно отметить, что химически встроить Mg2+в протопорфирины намного труднее, чем Fe2+. Какой фермент катализирует включение Mg2+в молекулу протопорфирина пока неизвестно.


8 стадия – превращение Mg-протопорфирина IХ в монометиловый эфир Mg-протопорфирина. Происходит этерификация метиловым спиртом. Фермент-S-аденозил-L-метионин-Mg-протопорфирин-метилтрансфераза осуществляет перенос СН3в 6 положение от S-аденозил-L-метионина. Далее, окисление пропионата в положении с образованием группы С=О.

9 стадия – образование протохлорофиллида происходит в результате этирификации (этирификация – образование сложных эфиров из кислот и спиртов) карбоксильной группы метанолом, замыканием пятого (фуранового) кольца окончательным формированием боковых цепей: в 4 положении винильная группа СН=СН2восстанавливается до этильной группы С2Н5, получается Mg-винилфеопорфирина5-протохлорофилл (ид).

Как и хлорофилл протохлорофиллид находится в связанной с белком форме.

10 стадия – в результате неферментативной индуцируемой светом реакции восстановления в кольце IV (появляются два атома Н) протохлорофиллид превращается в хлорофиллид (это хлорофиллы, в молекуле которых нет терпеноидной – обычно фитольной – боковой цепи). Спектр действия хлорофиллида подобен спектру поглощения протохлорофиллида, источником водорода в этой реакции служит белок (возможно НАДФ – донор водорода). Выделен в чистом виде фермент НАДФН – протохлорофиллид-оксиредуктаза. Таким образом, восстановление до хлорофиллида катализируется светом и происходит в пигмент-белковом комплексе, который имеет название протохлорофиллид-галохрома.

11 стадия – последняя стадия синтеза хлорофилла – образование сложного эфира хлорофиллида с фитолом, которая происходит в липидной фазе хлоропластов, поскольку фитол не растворяется в воде, с участием фермента хлорофиллаза. Фитол – полиизопреновое соединение синтезируется с ацетил-СоА через мевалоновую кислоту.

Хлорофиллbотличается, как мы отмечали от хлорофиллаатолько тем, что боковым заместителем при С3является группа СНО вместо СН3. Соотношение хлорофиллова/bв пределах одного вида – величина довольно постоянная.

Несмотря на большие усилия исследователей, пока никому не удалось детально выяснить, каким путем происходит биосинтез хлорофиллаb(его окисление).

Синтез хлорофилла зависит от генетических факторов. В результате генных мутаций появляются растения альбиносы, которые живут пока имеют запасные вещества из семян. Пятнистость –  результат отсутствия синтеза хлорофилла в некоторых частях листа, что также зависит от генов.

Содержание хлорофилла в листе колеблется очень мало. Это связано с тем, что старые молекулы пигмента беспрерывно разрушаются и образуются новые. При этом один процесс уравновешивает другой.

Кроме света, синтез хлорофилла зависит и от условий минерального питания. Прежде всего, необходимо железо, которое выполняет каталитические функции. При недостатке железа листья желтеют. Большое значение имеет обеспеченность растений азотом и магнием, так как эти элементы входят в состав молекулы пигмента. При нехватке меди хлорофилл легко разрушается.

Этиолированные  проростки содержат небольшое количество протохлорофиллид – белкового комплекса (голохром), и при кратковременном освещении в них происходит быстрое стехиометрическое восстановление протохлорофиллида до хлорофиллида, который затем медленно этирифицируется и преобразуется в хлорофилла. Если проростки затем вновь возвратить в темноту, в них образуется приблизительно такое же количество протохлорофиллида, которое было вначале, и при осветлении он тоже превращается в хлорофиллид. Таким образом, при освещении этиолированных проростков короткими вспышками света (по 10–4с), которые чередуются с 10–15 минутными темновыми промежутками, можно накопить большие количества хлорофилла.

Хотя у большинства высших растений синтез хлорофилла происходит только на свету, некоторые из них, например, сеянцы хвойных растений, могут синтезировать хлорофилл в темноте. Способны к темновому синтезу хлорофилла и многие водоросли, например бурые и сине-зеленые. Пока что непонятно, почему последняя стадия восстановления пигмента у этих организмов не зависит от освещения (света). Однако показано, что развивающиеся семядоли хвойных синтезируют значительное количество хлорофилла в темноте только до той поры, пока они находятся в контакте с макрогометофитом, т. е. до того времени пока макрогометофит не исчезнет. Семядоли, которые отделяют от макрогометофита, даже если их поместить в питательный раствор, синтезирует значительно меньше хлорофилла. Следовательно, какое-то вещество из макрогометофита непосредственно участвует в темновом синтезе хлорофилла.

Реакцией, на уровне которой происходит начальный этап биосинтеза хлорофилла, является синтез аминолевулиновой кислоты (рис. 2.6).

АЛК – это субстрат первого основного (решающего) этапа в синтезе тетрапиррола. Это значит, что, вероятно, АЛК лимитирует скорость всего процесса. Об этом свидетельствует и ряд данных, например, добавление АЛК к этиолированным проросткам в темноте приводит к увеличению количества протохлорофиллида (ПХД) по меньшей мере в 10 раз.

Рис. 2.6.Регуляция биосинтеза порфиринов в развивающихся хлоропластах. Стрелки () показывают чем ингибируется процесс

Считают, что протохлорофиллид или другой контролируемый посредник подавляет синтез фермента (или ферментов), действия на стабильную mРНК.

Поскольку при биосинтезе хлорофилла и биосинтезе гема используется один и тот же накопленный промежуточный продукт, можно думать, что регуляция происходит именно в той точке, где пути биосинтеза расходятся, т. е. на том этапе, на котором атом металла встраивается в молекулу. Вероятно, протохлорофиллид регулирует включение Mg, а так же, как отмечали, синтез белков.

Синтез каротиноидовначинается с ацетил-CоА через мевалоновую кислоту, геранилгеранилпирофосфат до ликопина. Ликопин (С40Н56) – является предшественником всех других каротиноидов. Синтез идет в темноте, но ускоряется при действии света. Ликопин имеет ациклическую структуру (отсутствие кольца с двух концов молекулы) и характерен для плодов томата. Циклизация в концах (одного или двух) молекулы ликопина приводит к образованию разных колец (β- и ε-ионовых). Так образование двух β-ионовых колец (по обоим концам молекулы) приводит к образованию β-каротина. Вообще, последовательность превращения каротиноидов следующая:

β-каротин (два β-иононовых кольца) → α-каротин (одно β-, другое ε-иононовое) → лютеин (ε-иононовые кольца и ОН-группа в кольце при С3);

β-каротин → зеаксантин (2 кольца β-иононовые и группа ОН в кольцах) → виолаксантин (два β-иононовых кольца, кроме ОН-групп появляются эпоксигруппыв каждом кольце).

Фотопротекторная роль каротиноидов, т. е. защита хлорофилла от фотоокисления, еще раз подчеркнем, объясняется их способностью взаимодействовать с возбужденными молекулами кислорода и хлорофилла. В этом случае энергия возбуждения триплетного хлорофилла и синглетного кислорода резонансным путем передается на каротиноиды, а затем рассеивается в виде тепла.

Таким образом, активный ацетил, образующийся из пировиноградной кислоты, служит исходным веществом для биосинтеза в растениях, сложных соединений к каким относятся и каротиноиды